

Plant Archives

Journal homepage: http://www.plantarchives.org DOI Url: https://doi.org/10.51470/PLANTARCHIVES.2025.v25.no.2.421

QUALITATIVE ANALYSIS OF BLENDED FLORAL TEA DURING STORAGE

M.V.V. Chaitanya^{1*}, P. Lalitha Kameswari², A.V.D. Dorajee Rao³, V. Sudhavani¹ and K. Umakrisha¹

¹Dr. Y.S.R. Horticultural University, COH- Venkataramannagudem - 534 101, Andhra Pradesh, India. ²Dr. Y.S.R. Horticultural University, Horticultural Research Station- Kovvur - 534 350, Andhra Pradesh, India. ³Associate Dean, Dr. Y.S.R Horticultural University, COH - Venkataramannagudem - 534 101, Andhra Pradesh, India. *Corresponding author E-mail: chaithanyam545@gmail.com (Date of Receiving-03-08-2025; Date of Acceptance-29-09-2025)

ABSTRACT

The present study revealed the effect of blending material (dried ginger, dried lemon grass and ginger and lemongrass combination) on the biochemical stability and organoleptic evaluation of floral tea prepared from rose, chrysanthemum, hibiscus, butterfly pea and green tea. Prepared blended floral teas were stored at ambient room temperature and analyzed at 0,15, 30, 45 and 60 days for antioxidant activity (%), anthocyanin content (mg L⁻¹), microbial count (microbial count \times 10⁴ cfu g⁻¹) and sensory evaluation was also done. Experiment was laid out using a factorial completely randomized design which was replicated twice. Over a period of 60 days, antioxidant activity, anthocyanin content and sensory parameters were decreased. Microbial count was observed at 60 days after storage. Among blended floral tea combinations, maximum anthocyanin content was recorded in T_3B_2 (hibiscus blended with dried lemongrass), while highest antioxidant activity was observed in T_1B_3 (rose petals blended with dried ginger and lemongrass). The highest score for color, flavour, taste and overall acceptability was noticed in T_4B_2 (butterfly pea flowers blended with dried lemongrass), while the maximum score for viscosity was observed in T_3B_3 (hibiscus flowers blended with dried ginger and lemongrass). This reveals an opportunity to make flowers into a profitable and marketable product with significant nutritional and economic benefits.

Key words: Flowers, Blends, Antioxidant activity, Anthocyanins and Sensory.

Introduction

Flowers are highly versatile and serve purposes well beyond ornamentation. They are utilized in food, traditional medicine, aromatherapy, pharmaceuticals, perfumes, essential oils, as well as natural dyes and fragrances. Ecologically, flowers are crucial for attracting pollinators and sustaining biodiversity. Many varieties are edible and incorporated into drinks and culinary dishes like salads for their flavor, aroma and decorative appeal. With their nutritional and medicinal benefits, edible flowers are increasingly recognized as valuable sources of nutraceuticals (Sruthi *et al.*, 2024).

Although, tea is the world's second most consumed beverage (Mukhopadyay *et al.*, 2012) and has a history spanning nearly 5,000 years, herbal tea blends have recently gained attention due to their antioxidant and therapeutic potential. The practice of blending teas, first developed in ancient China, flourished during the Song

Dynasty (960–1279 AD), when it became more refined and widespread. Combining herbs in tea not only enhances health benefits but also enriches sensory qualities. For example, ginger imparts a warm, robust flavour and is valued for its bioactive compound gingerol, which exhibits strong anti-inflammatory and antioxidant activity (Sofiah *et al.*, 2022). Similarly, lemongrass has been traditionally used in India to add fragrance and flavour to tea, while also acting as a natural antibacterial agent and preservative (Pruthviraj and Harshal, 2024).

Materials and Methods

The flowers dried under tray dryer at 45°C were used in this experiment. Dried ginger and lemon grass were collected from the local market of West Godavari district. Dried green tea leaves were procured from local market of Tadepalligudem, Andhra Pradesh and used in the experimental studies. Flowers and tea leaves were blended in 2:1 ratio consisting of 2 parts of flowers and

one part of dried ginger / dried lemon grass / dried ginger and lemon grass).

Treatment details

Factor I: Dried flower petals and green tea leaves (M_1)

T₁- Dried rose petals

T₂ - Dried chrysanthemum petals

T₃ - Dried hibiscus petals

 T_4 - Dried butterfly pea petals

T₅ – dried tea leaves

Factor II: Blending materials

B₁- Dried ginger

B₂- Dried lemongrass

B₂- Dried ginger and lemongrass

S.	Treatment	Treatment combination details
no.	combinations	
1	T_1B_1	Dried rose petals + Dried ginger
2	T_1B_2	Dried rose petals + Dried lemon grass
3	T_1B_3	Dried rose petals + Dried ginger and lemon grass
4	T_2B_1	Dried Chrysanthemum + Dried ginger
5	T_2B_2	Dried Chrysanthemum + Dried lemon grass
6	T_2B_3	Dried Chrysanthemum + Dried ginger and lemon grass
7	T_3B_1	Dried Hibiscus + Dried ginger
8	T_3B_2	Dried Hibiscus + Dried lemon grass
9	T_3B_3	Dried Hibiscus + Dried ginger and lemon grass
10	T_4B_1	Dried Butterfly pea + Dried ginger
11	T_4B_2	Dried Butterfly pea + Dried lemon grass
12	T_4B_3	Dried Butterfly pea + Dried ginger and lemon grass
13	T_5B_1	Dried tea leaves+ Dried ginger
14	T_5B_2	Dried tea leaves+ Dried lemon grass
15	T_5B_3	Dried tea leaves+ Dried ginger and lemon grass

Biochemical analysis

The prepared blended floral teas were analyzed for various parameters like Antioxidant activity, total phenol, total anthocyanin content and microbial count at the interval 15 days upto 2 months of storage period.

Antioxidant activity (%)

Results noticed that the mean antioxidant content decreased gradually from the initial days of storage to 60 days after storage.

The data revealed that different flowers and blending materials had significant effect on antioxidant activity. Among the flowers rose (T₁) recorded maximum antioxidant activity (89.205%) followed by butterfly pea flower (T₄) with 65.208%, whereas minimum antioxidant activity was observed in hibiscus (T₂) (34.392%) followed by green tea (T_5) (37.182%). Among the blending materials, maximum antioxidant activity was exhibited in dried ginger and lemongrass combination (B₂) with 56.607% followed by dried lemongrass (B₂) (55.161%) while minimum antioxidant activity was recorded in dried ginger (B_1) (52.907%). Among the interactions, significant difference in antioxidant activity was observed. The maximum antioxidants were recorded in rose blended with dried ginger and lemongrass combination (T₁B₂) (90.115%) followed by rose blended with dried lemongrass (T₁B₂) (89.785%) while minimum antioxidants were noticed in hibiscus blended with dried ginger (T₂B₁) (32.460) followed by hibiscus blended with lemongrass (T_3B_2) with 34.380%.

With further extended storage up to 60 days, rose (T₁) has shown highest antioxidant content of 82.993% followed by butterfly pea (T₄) (56.273%) while lowest antioxidants were recorded in hibiscus (T₃) (27.335%) followed by green tea (T₅) (29.765%). Among different blending materials, maximum antioxidant content was noticed in ginger and lemongrass combination (B₂) (50.302%) followed by dried lemongrass (B₂) (48.045%)while minimum antioxidant content was observed in dried ginger (B₁) with 45.700%. As per the interactions, maximum antioxidant activity was recorded in rose blended with dried ginger and lemongrass (T₁B₂) (85.555%) followed by rose blended with lemongrass (T_1B_2) (83.650%) however minimum antioxidant activity was recorded in hibiscus blended with ginger (T₃B₁) (25.835%) followed by hibiscus blended with lemongrass (T_3B_2) (27.235%) at 60th day after storage.

The data revealed that the maximum antioxidant activity was recorded in rose blended with dried ginger and lemongrass (T₁B₃). Irrespective of the treatments, there was a significant decrease in antioxidant activity during the storage period (Naithani *et al.*, 2006). Avneet *et al.* (2019) reported that high antioxidant activity of the rose tea could be due to presence of phenolics like flavanols, kaempferol and quercetin present in rose petals mainly in glycoside-bound form. Combining different

medicinal plants showed higher antioxidant potential than using an individual plant (Yang *et al.*, 2009).

Total anthocyanin content (mg g-1)

The analyzed data showed that there was a gradual decrease in the mean anthocyanin content (mg L⁻¹) from initial day to 60 days after storage.

At initial days of storage significantly higher anthocyanin content (62.458 mg g⁻¹) was noticed in hibiscus (T_a) followed by butterfly pea (T_a) (42.015 mg g⁻¹) whereas lowest anthocyanin content was observed in green tea (T₅) (0.872 mg g⁻¹) followed by chrysanthemum (T₂) (10.945 mg g⁻¹). Among blending materials, maximum anthocyanin content was recorded in dried lemongrass (B₂) (27.562 mg g⁻¹) followed by dried ginger (B₁) (26.939 mg g⁻¹) while minimum anthocyanin content was observed in ginger and lemongrass combination (B₃) (25.259 mg g⁻¹). The interaction between different dried flowers and blending materials were found significant. The maximum anthocyanin content was observed in hibiscus blended with dried lemongrass (T₃B₂) with 64.015 mg g⁻¹ followed by hibiscus blended with dried ginger (T_3B_1) (63.275 mg g⁻¹) while minimum anthocyanin content was recorded in green tea blended with dried ginger and lemongrass (T_5B_2) (0.815 mg g⁻¹) followed by green tea blended with ginger $(T_{\epsilon}B_{1})$ (0.850 mg g⁻¹).

The highest anthocyanin content in flowers was observed in hibiscus (T3) (58.642 mg g1) followed by butterfly pea (T₄) (37.228 mg g⁻¹), whereas lowest anthocyanin content was observed in green tea (T₅) (0.438) followed chrysanthemum (T_2) $(6.823 \text{ mg g}^{-1})$. Among blending materials, maximum anthocyanin content was recorded in dried lemongrass (B₂) (24.160 mg g⁻¹) followed by dried ginger (B₁) (23.120 mg g⁻¹) while minimum anthocyanin content was observed ginger and lemongrass combination (B₃) (21.959 mg g⁻¹). The interaction effect between different dried flowers and blending materials were found significant. The maximum anthocyanin content was observed in hibiscus blended with dried lemongrass (T₃B₂) with 59.885 mg L⁻¹ followed by hibiscus blended with dried ginger (T₃B₁) (59.365 mg g⁻¹) while minimum anthocyanin content was recorded in green tea blended with dried ginger and lemongrass (T_5B_2) (0.305 mg g⁻¹) followed by green tea blended with ginger (T_5B_1) $(0.375 \text{ mg g}^{-1})$ at 60^{th} day of storage.

The total anthocyanin content of herbal tea from different commercial flowers showed a significant decline with increasing storage duration. Anthocyanins are relatively unstable compounds and due to their high reactivity, they are easily degraded, resulting in the formation of colorless or undesirable brown pigments during extraction, processing and storage (Durst and Wrolstad, 2005).

Microbial count (microbial count \times 10⁴ cfu/g)

Significant difference in microbial count among various flowers and blending materials was noticed in 60th day of storage. Minimum microbial development $(1.042 \times 10^4 \text{ cfu/g})$ was noticed in green tea (T₅) followed by hibiscus (T_2) (1.102 × 10⁴ cfu/g) whereas maximum microbial count recorded in butterfly pea (T_a) (1.172 × 10^4 cfu/g) followed by rose (T₁) (1.122 × 10^4 cfu/g). Among the blending materials, minimum microbial count was observed in dried ginger (B₁) $(1.097 \times 10^4 \text{ cfu/g})$ followed by dried ginger and lemongrass combination (B₃) $(1.115 \times 10^4 \text{ cfu/g})$ while maximum microbial count was noticed in dried lemongrass (B₂) (1.119 \times 10⁴ cfu/g). Among the interactions, minimum microbial count was recorded in green tea blended with dried ginger and lemongrass combination (T_5B_3) (1.015 × 10⁴ cfu/g) followed by chrysanthemum blended with dried ginger (T_2B_1) (1.035 × 10⁴ cfu/g) whereas maximum microbial count observed in butterfly pea blended with ginger and lemongrass combination (T_aB_a) (1.205 × 10⁴ cfu/g).

The drying process contributed significantly to reducing water activity, thereby lowering microbial contamination in herbal teas, ensuring safety for consumption and extending shelf life. The primary objective of dehydration is to remove sufficient moisture from the product to inhibit microbial survival. Similar findings were reported by Foline *et al.* (2011) in dehydrated moringa leaves. Among the samples, green tea consistently recorded the lowest microbial count, which can be attributed to its inherently low water activity (Vyshali *et al.*, 2022), Amol *et al.* (2022) in rose and hibiscus tea.

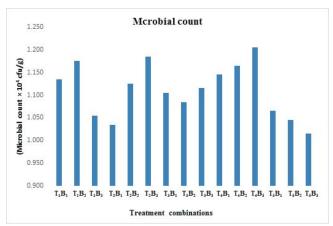


Fig. 1: Effect of different blendings and storage on (Microbial count \times 10⁴ cfu/g) of floral teas.

Table 1: Effect of blending materials on antioxidant activity (%) of dried flowers and green tea leaves at different days of storage.

- 1						Blendingm	Blending materials (B)					
						Days of	Days of storage					
		0 DAYS	SAV			15 DAYS	SAV			30 DAYS	AYS	
$\mathbf{B}_{_{1}}$	_	\mathbf{B}_2	B ₃	Means	$\mathbf{B}_{_{1}}$	\mathbf{B}_{2}	\mathbf{B}_{3}	Means	$\mathbf{B}_{_{1}}$	\mathbf{B}_2	\mathbf{B}_3	Means
87.675		89.785	90.155	89.205	87.125	89.425	90.050	88.867	85.825	87.800	88.705	87.443
(69.448)		(71.361)	(71.714)	(70.841)	(68.972)	(71.023)	(71.613)	(70.536)	(67.883)	(69.556)	(70.362)	(69.267)
45.910		48.745	50.760	48.472	45.535	48.315	50.525	48.125	42.265	48.125	50.375	46.922
(42.654)	$\overline{}$	(44.281)	(45.435)	(44.123)	(42.438)	(44.034)	(45.301)	(43.925)	(40.550)	(43.925)	(45.215)	(43.230)
32.460		34.380	36.335	34.392	32.200	34.155	34.220	33.525	30.050	31.835	32.735	31.540
(34.732)	5	(35.898)	(37.070)	(35.900)	(34.573)	(35.762)	(36.233)	(35.519)	(33.242)	(34.348)	(34.900)	(34.164)
63.655	5	65.535	66.435	65.208	63.425	65.160	66.255	64.947	60.450	62.135	63.035	61.873
(52.924)	2	(54.051)	(54.595)	(53.857)	(52.788)	(53.825)	(54.486)	(53.699)	(51.032)	(52.023)	(52.556)	(51.870)
34.835	35	37.360	39.350	37.182	34.530	33.720	39.110	35.787	32.070	34.060	37.950	34.693
(36.172)	7	(37.678)	(38.851)	(37.567)	(35.988)	(36.703)	(38.710)	(37.134)	(34.493)	(35.705)	(38.027)	(36.075)
52.907	0.1	55.161	26.607	54.892	52.563	54.155	56.032	54.250	50.132	52.791	54.560	52.494
(47.186)	9	(48.654)	(49.654)		(46.952)	(48.269)	(49.267)		(45.440)	(47.112)	(48.212)	
H		В	TxB	B	T	В	TxB	(B	T	В	T	TxB
0.026	9	0.020	0.044	4	0.011	0.008	0.0	0.018	0.028	0.022	0.0	0.049
0.077	7	090.0	0.134	8	0.032	0.025	0.0	0.055	0.085	0.066	0	0.148

Best treatments obtained from first experiment (T): $T_1 - Rose$; $T_2 - Chrysanthemum$; $T_3 - Hibiscus$; $T_4 - Butterfly pea$; $T_5 - Green tea$ **Blending material** (B): $B_1 - Dried$ ginger; $B_2 - Dried$ lemongrass; $B_3 - Dried$ ginger and lemongrass

Continued..

				Blending material (B)	aterial (B)			
				Days of storage	storage			
		45 D	45 DAYS			60 DAYS	WS	
	$\mathbf{B}_{_{1}}$	\mathbf{B}_2	B ₃	Means	$\mathbf{B}_{_{\mathrm{I}}}$	\mathbf{B}_2	B	Means
$\mathbf{T}_{_{1}}$	82.325(65.139)	85.560(67.666)	86.555(68.490)	84.813(67.098)	79.775(63.274)	83.650(66.1499)	85.555(67.663)	82.993(65.695)
$\mathbf{T}_{_{\! 2}}$	39.870(39.155)	46.720(43.119)	50.460(45.263)	45.683(42.512)	39.555(38.971)	43.345(41.175)	48.235(43.988)	43.712(41.378)
Ţ	28.250(32.107)	29.555(32.932)	30.835(33.730)	29.547(32.923)	25.835(30.549)	27.235(31.457)	28.935(32.541)	27.335(31.516)
$\mathbf{T}_{\!$	57.750(49.458)	59.535(50.496)	61.435(51.610)	59.573(50.521)	54.450(47.553)	56.135(48.523)	58.235(49.739)	56.273(48.605)
$T_{\rm s}$	30.460(33.497)	31.960(34.425)	34.815(36.160)	32.412(34.694)	28.885(32.510)	29.860(33.123)	30.550(33.553)	29.765(33.062)

0.021

0.012

0.010

0.013

Means	47.731(43.871)	50.666(45.728)	52.820(47.051)	50.406	45.700(42.571)	45.700(42.571) 48.045(44.086)	50.302(45.497)	48.016
Factor	T	В	TxB		T	В	TxB	3
SEm+	0.053	0.041	0.092		0.050	0.039	0.087	7
CD@5%	0.161	0.125	0.125		0.152	0.118	0.263	3

Best treatments obtained from first experiment (T): T₁ – Rose; T₂ – Chrysanthemum; T₃ – Hibiscus; T₄ – Butterfly pea; T₅– Green tea **Blending materials (B):** B_1 – Dried ginger; B_2 – Dried lemongrass; \bar{B}_3 – Dried ginger & lemongrass

Table 2: Effect of blending materials on total anthocyanin content (mg L-1) of dried flowers and green tea leaves at different days of storage.

	70	Means	2.267	6.823	58.642	228	0.438	080		
	70			9	58.	37.	0.4	23.6	TxB	0.007
	AY	B	10.615	5.325	56.675	36.875	0.305	21.959	T	0.0
	60 DAYS	\mathbf{B}_2	13.720	7.975	59.885	38.585 36.875 37.228	0.635	24.160	В	0.003
		$\mathbf{B}_{_{1}}$	12.465					23.120	T	0.004
		Means	13.205	7.747	59.513	38.250	0.555	23.854	(B	07
	XX	B	11.725	6.430	57.420	37.615	0.415	22.721	T	0.007
	45 D/	\mathbf{B}_2	14.355	8.785	60.815	39.815	0.765	24.907	В	0.003
		\mathbf{B}_1	13.535	8.025	60.305	37.320	0.485	23.934	T	0.004
		Means	14.078		60.725	39.288	0.632	24.729	В	8
storage	AYS	\mathbf{B}_{3}	12.835	7.355	58.765	38.430	0.515	23.580	$\mathbf{T}\mathbf{x}$	0.128
Days of	30 D/	\mathbf{B}_2	15.175	9.985	61.575	40.870		289.52	В	0.057
		\mathbf{B}_{1}	14.225	9.425	61.835	38.565	0.575	24.925	T	0.074
		Means	15.328	9.785	61.943	40.680	0.712	25.690	В	15
	VVS	\mathbf{B}_{3}	14.025	8.645	59.870	39.145	0.600	24.457	Tx	0.015
	15D/	\mathbf{B}_2	16.425	10.625	63.830	41.720	0.885	26.697	В	0.007
		$\mathbf{B}_{_{1}}$	15.535	10.085	62.130	41.175	0.650	25.915	T	0.009
		Means	16.643	10.945	62.458	42.015	0.872	26.587	B	19
	XS		15.285	9.835	60.085	40.275	0.815	25.259	T	0.019
	0 DA	\mathbf{B}_2	17.815	11.975	64.015	43.055	0.950	27.562	В	0.009
		\mathbf{B}_1	16.830	11.025	63.275	42.715	0.850	26.939	T	0.001 0.009
Flowers &	green tea leaves		\mathbf{T}_1	\mathbf{T}_2	T_3	\mathbf{T}_4	$T_{\rm s}$	Means	Factor	SEm±
	Flowers & Days of storage	0 DAYS 15 DAYS		Days of storage ODAYS 15 DAYS 30 DAYS 45 DAYS B ₁ B ₂ B ₃ Means B ₃	DAYS 15D. B ₁ B ₂ B ₃ Means B ₁ B ₂ 16.830 17.815 15.285 16.643 15.535 16.425 11.025 11.975 9.835 10.945 10.085 10.625	DDAYS 15D. B ₁ B ₂ B ₃ Means B ₁ B ₂ 16.830 17.815 15.285 16.643 15.535 16.425 11.025 11.975 9.835 10.945 10.085 10.625 63.275 64.015 60.085 62.458 62.130 63.830	DDAYS 15D. B ₁ B ₂ B ₃ Means B ₁ B ₂ 16.830 17.815 15.285 16.643 15.535 16.425 11.025 11.975 9.835 10.945 10.085 10.625 63.275 64.015 60.085 62.458 62.130 63.830 42.715 43.055 40.275 42.015 41.175 41.720	DDAYS 15D. B ₁ B ₂ Means B ₁ B ₂ 16.830 17.815 15.285 16.643 15.535 16.425 11.025 11.975 9.835 10.945 10.085 10.625 63.275 64.015 60.085 62.458 62.130 63.830 42.715 43.055 40.275 42.015 41.175 41.720 0.850 0.950 0.815 0.872 0.650 0.885	DDAYS 15D. B ₁ B ₂ B ₃ Means B ₁ B ₂ 16.830 17.815 15.285 16.643 15.535 16.425 11.025 11.975 9.835 10.945 10.085 10.625 63.275 64.015 60.085 62.458 62.130 63.830 42.715 43.055 40.275 42.015 41.775 41.720 0.850 0.950 0.815 0.872 0.650 0.885 26.939 27.562 25.259 26.587 25.915 26.697	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Best treatments obtained from first experiment (T): T₁ – Rose; T₂ – Chrysanthemum; T₃ – Hibiscus; T₄ – Butterfly pea; T₅– Green tea **Blending materials (B):** B₁ – Dried ginger; B₂ – Dried lemongrass; B₃ – Dried ginger & lemongrass

0.045

0.020

0.026

0.058

0.026

0.034

CD @ 5%

Organoleptic Evaluation

Colour

During storage, the mean acceptability scores of colour decreased from initial day to 60 days of storage.

The data revealed that butterfly pea flowers (T_{A}) exhibited well maintained colour (8.817) followed by hibiscus (T₃) (8.025) whereas minimum score was recorded in chrysanthemum (T₂) (6.147) followed by green tea (T_s) (6.698). Among blending materials, dried lemongrass (B₂) shown highest score (7.796) followed by dried ginger and lemongrass (B₂) (7.339) while minimum score was recorded dried ginger (B₁) in with 7.094. The interaction between flowers and blending materials revealed that, maximum score were obtained from butterfly pea flowers blended with dried lemon $grass(T_AB_2)$ (8.945), which was on par with butterfly pea blended with dried ginger and lemongrass combination (T₄B₂) (8.765) and butterfly pea flowers blended with dried ginger (T₄B₁) (8.740) and hibiscus blended with dried lemongrass (T_2B_2) (8.770) whereas minimum score was recorded in chrysanthemum blended with dried ginger (T_2B_1) (5.845) followed by chrysanthemum blended with dried lemongrass (T_2B_2) (6.600) on initial day of storage.

By the 60th day of storage, butterfly pea (T₄) shown highest score for colour (8.155) followed by hibiscus (T_3) (7.380), while lowest score was recorded in chrysanthemum (T_2) (5.605) followed by green tea (T_5) (6.205). Among different blending materials, maximum score for colour was noticed in dried lemongrass (B₂) with 7.185 followed by ginger and lemongrass combination (B₃) (6.803) while minimum score was observed in dried ginger (B_1) (6.476). As per the interactions, highest score for colour was recorded in butterfly pea blended with dried lemongrass (T₄B₂) (8.240) which is on par with butterfly pea blended with dried ginger and lemongrass $(T_A B_3)$ (8.140) and butterfly pea blended with dried ginger (T₄B₁) (8.085) and hibiscus blended with dried lemongrass (T_3B_2) (8.075) however minimum score was recorded in chrysanthemum blended with dried ginger (T_2B_1) (5.165) followed by chrysanthemum blended with dried ginger and lemongrass (T_2B_2) (5.585).

The reduction in color intensity of herbal teas during storage may be attributed to oxidative reactions and enzymatic browning, which lead to product discoloration. Similar results were reported by Nath (2007) in hibiscus tea. Sruthi *et al.* (2024) observed that the lowest color score was obtained in a blend of dried rose petals and dried ginger powder in a 1:1 ratio. These results are consistent with the findings of Sofiah *et al.* (2022) in butterfly pea blended with ginger powder and Amol *et*

al. (2022) in rose and hibiscus teas.

Flavour

The mean scores for the flavour of the blended floral tea powder were decreased from the initial day to 60 days after storage.

At initial days of storage significantly higher score for flavour (8.118) was noticed in butterfly pea (T₄) followed by hibiscus (T_3) (7.480) whereas lowest score was observed in chrysanthemum (T_2) (6.267) followed by green tea (T_s) (6.498). Among blending materials, maximum score for flavour was recorded in dried lemongrass (B₂) (7.641) followed by ginger and lemongrass combination (B₂) (6.984) while minimum score was observed in dried ginger (B₁) (6.685). The interaction between different dried flowers and blending materials were found significant. The maximum score for flavour was observed in butterfly pea blended with dried lemongrass (T₄B₂) with 8.765 followed by hibiscus blended with dried lemongrass (T_3B_2) (7.880) while minimum score was recorded in green tea blended with dried ginger (T₂B₁) (5.885) followed by chrysanthemum blended with dried ginger (T_2B_1) (5.965).

By the 60th day of storage, shown highest score for flavour butterfly pea (T_4) (7.367) followed by hibiscus (T_3) (6.522) while lowest score was recorded in chrysanthemum (T_2) (5.570) followed by green tea (T_5) (5.835). Among different blending materials, maximum score was noticed in dried lemongrass (B_2) (6.907) followed by dried ginger and lemongrass combination (B_3) (6.202) while minimum score was observed in dried ginger (B_1) with 5.920. As per the interactions, maximum score for flavour was recorded in butterfly pea blended with dried lemongrass (T_4B_2) (7.910) followed by hibiscus blended with dried lemongrass (T_3B_2) (7.195) however minimum score was recorded in green tea blended with ginger (T_5B_1) (5.185) followed by chrysanthemum blended with ginger (T_5B_1) (5.185).

The above results indicated maximum score for flavour was recorded in butterfly pea blended with dried lemongrass (T₄B₂). Oduro *et al.* (2013) reported similar findings, noting that higher blends of *Cymbopogon citratus* were preferred due to its high essential oil content. The decline in flavour score during storage may be attributed to the loss of volatile aromatic compounds, as also suggested by Thakur and Barwal (1998). Flavour deterioration over prolonged storage can further be explained by the sensitivity of volatile compounds to high storage temperatures, along with enzymatic degradation of phenols and oxidative changes. Comparable observations of flavour deterioration with extended

Table 3: Effect of blending materials on colour score of dried flowers and green tea leaves at different days of storage.

			S	7	w	0	w	w	1				1
			Means	6.762	5.605	7.380	8.155	6.205	6.821	TxB	0.134	0.404	
		60 DAYS	\mathbf{B}_{3}	6.975	5.585	7.100	8.140	6.215	6.803	T	0.	0.	
		Q 09	\mathbf{B}_2	7.205	6.065	8.075	8.240	6.340	7.185	В	090.0	0.181	
			$\mathbf{B}_{_{1}}$	6.105	5.165	6.965	8.085	090.9	6.476	T	0.077	0.233	
			Means	6.937	5.733	7.575	8.313	6.327 6.060	6.977 6.476	TxB	0.118	0.355	
		SAV	\mathbf{B}_{3}	7.215	5.620	7.325	8.270	6.320	6.950	Ty	0.1	0.3	
		45 DAYS	\mathbf{B}_2	7.345	6.245	8.320	8.485	6.425	7.364 6.950	В	0.053	0.159	
			$\mathbf{B}_{_{1}}$	6.250	5.335	7.080	8.185	6.235	6.617	T	0.068	0.205	
(B)			Means	7.078	5.838	7.668	8.495	6.442		В	4	4	
Blending material (B)	Days of storage	SAV	\mathbf{B}_{3}	7.340	5.675	7.330	8.435	6.375	7.558 7.031 7.104	TxB	0.114	0.344	
nding m	Days of	30 DAYS	\mathbf{B}_2	7.565	6.370	8.575	8.675	9099	7.558	В	0.051	0.154	
Ble			$\mathbf{B}_{_{1}}$	6.330	5.470	7.100	8.375	6.345	6.724	T	990:0	0.199	
			Means	7.185	5.978	7.883	8.618	6.585	7.250	В	92	6/	
		AYS	B	7.425	5.760	7.530	8.520	6.505	7.148	TxB	0.126	0.379	
		15D/	\mathbf{B}_2	7.615	6.560	8.675	8.840	0229	7.692	В	0.056	0.169	
			$\mathbf{B}_{_{1}}$	6.515	5.615	7.445	8.495	6.480		T	0.073	0.219	
			Means	7.362	6.147	8.025	8.817	6.5 90 6.698	7.409	В	8	72	
		KS.	\mathbf{B}_{3}	7.615	5.940	7.785	8.765	6.590	7.339 7.409 6.910	TxB	0.090	0.272	
		0 DAYS	\mathbf{B}_2	7.730	6.655	8.770	8.945	088.9	7.796	В	0.040	0.122	
			$\mathbf{B}_{_{1}}$	6.740	5.845	7.520	8.740	6.625	7.094 7.796	T	0.052	0.157	
	Flowers &	tea leaves		$\mathbf{T}_{_{1}}$	$\mathbf{T}_{_{2}}$	\mathbf{T}_{3}	\mathbf{T}_4	T	Means	Factor	SEm±	CD@5%	

Best treatments obtained from first experiment (T): T₁ – Rose; T₂ – Chrysanthemum; T₃ – Hibiscus; T₄ – Butterfly pea; T₅– Green tea **Blending materials (B):** B_1 – Dried ginger; B_2 – Dried lemongrass; B_3 – Dried ginger & lemongrass

Table 4: Effect of blending material on flavour score of dried flowers and green tea leaves at different days of storage.

									Ble	Blending material (B)	aterial	(B)								
Flowers &										Days of storage	storage									
green tea leaves		0 DAYS	XS			15 DAYS	4YS			30 DAYS	AYS			45 DAYS	YYS			60 DAYS	AYS	
	\mathbf{B}_1	\mathbf{B}_2	\mathbf{B}_{3}	Means	$\mathbf{B}_{_{1}}$	\mathbf{B}_2	\mathbf{B}_{3}	Means	$\mathbf{B}_{_{1}}$	\mathbf{B}_2	B ₃	Means	\mathbf{B}_1	\mathbf{B}_2	B ₃	Means	$\mathbf{B}_{_{1}}$	\mathbf{B}_2	\mathbf{B}_3	Means
T,	6.685	7.795		6.980 7.153 6.565		7.575	6.755	6.965	6.370	7.385	6.465	6.465 6.740	6.140	7.195	6.385	6.573	5.910	7.075	6.280	6.422
\mathbf{T}_{2}	5.965	5.965 6.770	6.065	6.065 6.267 5.755		6.575	5.920	5.920 6.083	5:635	6.315	5.650	2.867	5.390	6.185	5.445	5.673	5.195	6.040	5.475	5.570
\mathbf{T}_{3}	7.165	7.880		7.395 7.480 6.595	6.595	092.2	6.745	7.033	6.435	0097	6.605	088.9	6.230	7.275	6.435	6.647	6.145	7.195	6.225	6.522
\mathbf{T}_{4}	7.725	8.765		7.865 8.118 7.465		8.630	7.625	7.907	7.415	8.400	7.455 7.757		7.190	8.350	7.230	7.590	7.165	7.910	7.025	7.367
$\mathbf{T}_{\mathbf{s}}$	5.885	5.885 6.995	6.615	6.615 6.498 5.740		6.805	6.520	6.520 6.355	5.400	6.530	6.280	0.009	5.285	6.515 6.230	6.230	6.010	5.185	6.315	9009	5.835
Means	6.685	6.685 7.641		6.984 7.103	6.424 7.469	7.469	6.713	6.869	6.251	6.251 7.246 6.491	6.491	6.663	6.047	7.104 6.345		6.499 5.920		6.907 6.202		6.343
Factor	T	В	T	TxB	T	В	TxB	(B	T	В	TxB	В	T	В	T	TxB	T	В	TxB	B
SEm±	0.055 0.042	0.042	0:0	0.095	0.061	0.047	0.1	0.105	0.058	0.045	0.100	0(0.065	0.050	0.1	0.112	0.059	0.046	0.103	03
CD@5%	0.165	0.128	0.2	0.285	0.183	0.142	0.317	17	0.174	0.135	0.302	72	0.195	0.151	0.3	0.338	0.178	0.138	0.309	8
	;					E F	E	L	-	E		1	:	E						

Best treatments obtained from first experiment (T): T₁ – Rose; T₂ – Chrysanthemum; T₃ – Hibiscus; T₄ – Butterfly pea; T₅– Green tea **Blending materials (B):** B₁ – Dried ginger; B₂ – Dried lemongrass; B₃ – Dried ginger & lemongrass

Table 5: Effect of blending materials on taste score of dried flowers and green tea leaves at different days of storage.

									Ble	Blending material (B)	aterial	(B)								
Flowers &										Days of storage	storage									
green tea leaves		0 DAYS	YS			15D/	AYS			30 DAYS	4YS			45 DAYS	WS			60 DAYS	4YS	
	$\mathbf{B}_{_{1}}$	\mathbf{B}_2	\mathbf{B}_3	Means	\mathbf{B}_1	\mathbf{B}_2	\mathbf{B}_{3}	Means	\mathbf{B}_1	\mathbf{B}_2	\mathbf{B}_{3}	Means	\mathbf{B}_1	\mathbf{B}_2	\mathbf{B}_{3}	Means	\mathbf{B}_1	\mathbf{B}_2	\mathbf{B}_{3}	Means
$\mathbf{T}_{_{1}}$	7.605	8.345	7.830	7.830 7.927 7.515	7.515	8.125	7.615		7.752 7.425	7.910	7.510 7.615		7.230	7.765	7.320	7.438	7.070	7.440	7.245	7.252
$\mathbf{T}_{_{2}}$	6.905	7.915	7.615	7.615 7.478 6.740	6.740	7.750	7.495	7.328	6.515	7.480	7.345	7.113	6.340	7.250	7.125	6.905	6.220	6.985	092.9	6.655
$\mathbf{T}_{\mathbf{i}}$	8.320	8.840	8.525	8.525 8.562 8.125	8.125	8.715	8.345	8.395	8.395 7.905	8.560	8.120	8.120 8.195	7.735	8.350	7.915	8.000 7.445	7.445	8.000	7.615	7.687
\mathbf{T}_{4}	8.655	000.6	8.800	8.800 8.818 8.500	8.500	8.865	8.770	8.712	8.320	8.720	8.575	8.575 8.538	8.140	8.545	8.385	8.357	7.870	8.355	8.000	8.075
Ţ	7.110	7.110 7.615	7.485	7.485 7.403 6.845	6.845	7.525	7.350	7.350 7.240 6.630	6.630	7.240	6.925	6.925 6.932 6.545		7.025 6.730		6.767 6.205	6.205	0/8.9	6.515	6.530
Means	7.719	7.719 8.343	8.051	8.051 8.038 7.545	7.545	8.196	7.915	7.915 7.885 7.359 7.982	7.359	7.982	7.695 7.679	-	7.198 7.787 7.495	7.787	7.495	7.493	6.962	7.530	7.227	7.240
Factor	T	В	TxB	B	T	В	$\mathbf{T}_{\mathbf{x}}$	TxB	T	В	TxB	В	T	В	T,	TxB	T	В	TxB	(B
SEm+	0.035	0.027	0.061	19	0.054	0.042	0.0	0.093	0.047	0.036	0.081	31	0.053	0.041	0.0	0.092	0.028	0.021	0.0	0.048
CD@5% 0.106 0.082	0.106	0.082	0.184	22	0.162	0.125	0.2	0.280	0.140	0.140 0.109	0.243	13	0.160	0.124	0.2	0.277	0.084	0.065	0.145	45

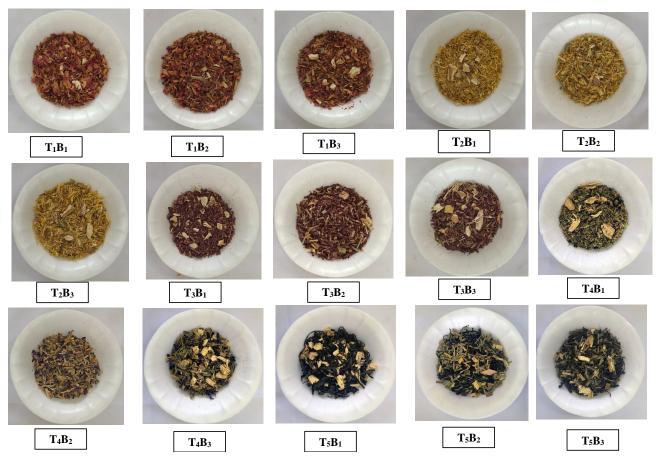

Best treatments obtained from first experiment (T): T_1 – Rose; T_2 – Chrysanthemum; T_3 – Hibiscus; T_4 – Butterfly pea; T_5 – Green tea **Blending material** (B): B_1 – Dried ginger; B_2 – Dried lemongrass; B_3 – Dried ginger & lemongrass

Table 6: Effect of blending materials on viscosity score of dried flowers and green tea leaves at different days of storage.

			ans	35	12	65	38	25	95			
			Means	6.835	6.012	8.065	7.538	5.025	6.695	TxB	0.128	0.386
		60 DAYS	B	7.050	6.125	8.355	8.000	5.120	6.930			
		Q 09	\mathbf{B}_2	6.540	5.940	7.720	7.510	4.840	6.510	В	0.057	0.172
			$\mathbf{B}_{_{1}}$	6.915	5.970	8.120	7.105	5.115	6.892 6.645	T	0.074	0.223
			Means	7.032	6.185	8.262	7.780	5.203	6.892	TxB	0.120	0.362
		AYS	\mathbf{B}_{3}	7.225	6.340	8.545	8.245	5.330	7.137	T	0.1	0.3
		45 DAYS	\mathbf{B}_2	6.730	6.050	7.910	7.720	5.050	6.692	В	0.054	0.162
			$\mathbf{B}_{_{1}}$	7.140	6.165	8.330	7.375	5.230	6.848	T	0.069	0.209
(B)			Means	7.455 7.238	6.535 6.358	8.458	8.330 7.920	5.388		В	55	17
aterial	storage	YYS	B	7.455	6.535	8.705	8.330	5.505 5.388	7.306 7.073	$\mathbf{T}\mathbf{x}\mathbf{B}$	0.105	0.317
Blending material (B)	Days of storage	30 DAYS	\mathbf{B}_2	6.930	6.200	8.140	7.875	5.320	6.893	В	0.047	0.142
Ble			\mathbf{B}_1	7.330	6.340	8.530	7.555	5.340	7.019	T	0.061	0.183
			Means	7.327	6.460	8.562	8.012	5.498	7.172	В	31	32
		DAYS	B	7.550	6.645	8.800	8.400	5.645	7.408	$\mathbf{T}\mathbf{x}\mathbf{B}$	0.031	0.092
		15D/	\mathbf{B}_2	7.000	6.275	8.230	8.000	5.370	6.975	В	0.014	0.041
			\mathbf{B}_1	7.430	6.460	8.655	7.635			T	0.018	0.053
			Means	7.715 7.453	6.705 6.528 6.460	8.628	8.515 8.118 7.635	5.740 5.517 5.480	7.505 7.249 7.132	В	11	42
		YS	B	7.715	6.705	8.850	8.515	5.740	7.505	$\mathbf{T}\mathbf{x}\mathbf{B}$	0.111	0.334
		0 DAYS	\mathbf{B}_2	7.125	6.555 6.325	8.320	8.125	5.545 5.265	7.210 7.032	В	0.050	0.150
			\mathbf{B}_1	7.520	6.555	8.715	7.715	5.545	7.210	T	0.064	0.193 0.150
	Flowers &	green tea leaves		$\mathbf{T}_{_{\mathbf{I}}}$	\mathbf{T}_2	\mathbf{T}_{3}	\mathbf{T}_4	Ľ	Means	Factor	SEm+	CD@5%

Best treatments obtained from first experiment (T): T₁ - Rose; T₂ - Chrysanthemum; T₃ - Hibiscus; T₄ - Butterfly pea; T₅- Green tea

Blending materials (B): B_1 – Dried ginger; B_2 – Dried lemongrass; B_3 – Dried ginger & lemongrass.

Plate 1: Blends of flowers with dried ginger, lemongrass and ginger–lemongrass combination.

storage were reported by Aggarwal and Kaur (2017) in rose extract incorporated into various value-added products and by-products.

Taste

Mean acceptability scores for taste decreased during storage from initial to 60 days after storage.

The data revealed that butterfly pea flowers (T₄) exhibited highest score (8.818) followed by hibiscus (T₂) (8.562) whereas minimum score was recorded in green tea (T_5) (7.403) followed by chrysanthemum (T_2) (7.478). Among blending materials, dried lemongrass (B₂) shown highest score (8.343) followed by dried ginger and lemongrass combination (B₂) (8.051) while minimum score was recorded in dried ginger (B₁) with 7.719. The interaction between flowers and blending materials, maximum score was obtained from butterfly pea flowers blended with dried lemon grass(T₄B₂) (9.000), which is on par with hibiscus blended with dried lemongrass (T₂B₂) (8.800) whereas minimum score was recorded in chrysanthemum blended with ginger (T₂B₁) (6.905) followed by green tea blended with ginger (T_sB_1) (7.110) at initial day of storage.

By the 60th day of storage, butterfly pea (T₄) shown

highest score for taste (8.075) followed by hibiscus (T₃) (7.687) while lowest score was recorded in green tea (T_5) (6.530) followed by chrysanthemum (T_2) (6.655). Among different blending materials, maximum score for taste was noticed in dried lemongrass (B₂) (7.530) followed by dried ginger and lemongrass combination (B₃) (7.227), while minimum score was observed in dried ginger (B₁) with 6.962. As per the interactions, highest score for taste was recorded in butterfly pea blended with dried lemongrass (T_AB_2) (8.355) followed by butterfly pea blended with ginger and lemongrass combination (T_4B_3) (8.000) and hibiscus blended with dried lemongrass (T₃B₂) (8.000) however minimum score was recorded in chrysanthemum blended with dried ginger (T_2B_1) (6.220) followed by green tea blended with dried ginger (T₅B₁) (6.205).

The above results pointed to the fact that highest score for taste was recorded in butterfly pea blended with dried lemongrass (T₄B₂). The infusion of lemongrass imparts an aromatic drink with a characteristic lemon flavour (Figueirinha *et al.*, 2008), which likely contributed to its higher score. The reduced astringency of this blend might have also enhanced its overall taste profile, leading to higher preference, as similarly reported by Moodley *et*

Table 7: Effect of blending materials on overall acceptability score of dried flowers and green tea leaves at different days of storage.

									Ble	Blending material (B)	aterial (B)								
Flowers &										Days of storage	storage									
green tea leaves		0 DAYS	XS			15 DA	DAYS			30 DAYS	WS			45 DAYS	WS			Q 09	60 DAYS	
	\mathbf{B}_{1}	\mathbf{B}_{2}	B	Means	\mathbf{B}_1	\mathbf{B}_2	B	Means	\mathbf{B}_{1}	\mathbf{B}_2	B ₃ Means	Means	$\mathbf{B}_{_{1}}$	\mathbf{B}_2	B	Means	$\mathbf{B}_{_{1}}$	\mathbf{B}_2	B	Means
$\mathbf{T}_{_{\! 1}}$	7.620	8.380		7.860 7.953	7.425	8.000	7.535	7.653	7.290	7.935	7.415 7.547	-	7.175	7.845	7.210	7.410	7.000	7.635	006.9	7.178
\mathbf{T}_2	6.985	6.985 7.945	7.615	7.615 7.515 6.645 7.625	6.645	7.625	7.240	7.170	6.555 7.510	7.510	7.155 7.073	7.073	6.360	7.430	7.040	7.040 6.943	6.255	7.225	6.820	6.767
Ľ	8.330	8.825		8.520 8.558	8.065	8.585	8.200	8.283	7.790	8.435	8.090 8.105		7.735	8.375	7.995	8.035 7.600	7.600	8.110	0997	7.790
\mathbf{T}_{4}	8.530	000.6		8.840 8.790	8.320	8.740	8.765	8.608	8.170	8.610	8.490 8.423	8.423	7.995	8.430	8.415	8.280	7.920	8.320	8.135	8.125
T	7.145	7.625	7.145 7.625 7.340 7.370 6.935 7.455	7.370	6.935		7.140	7.140 7.177	6.840	6.840 7.235 7.020 7.032 6.595	7.020	7.032	6.595	6.990	6.870	6.990 6.870 6.818 6.385	6.385	6.765	6.710	6.620
Means	7.722	7.722 8.355		8.035 8.037 7.478 8.081	7.478		7.776	5.556	7.329	7.776 5.556 7.329 7.945 7.634 7.636 7.172 7.814 7.506 7.497 7.032	7.634	7.636	7.172	7.814	7.506	7.497	7.032	7.611	7.245 7.296	7.296
Factor	L	В	TxB	В	T	В	TxB	(B	T	В	$\mathbf{T}\mathbf{x}\mathbf{B}$	B	T	В	T	TxB	T	В	Ţ	TxB
SEm±	0.045	0.035	0.078	82	0.038	0.029	0.066	99	0.045	0.035	0.078	<u>∞</u>	0.056	0.043	0.0	0.097	0.056	0.043	0.0	960:0
CD@5%	0.136 0.105	0.105	0.235	35	0.115	0.089	0.198	86	0.135	0.105	0.234	4	0.169	0.131	0.2	0.293	0.167	0.130	0.2	0.290
Rost treatments obtained from first experiment (T). T	onte obt	oinod fr	om fine	t overous	mont (7	ı	7.00C	Descr Chrisenthemin T	onthom		Libicon	Uibisons. T Duttouffy nos: T Cross tos	211#Orfly	T. 2001.		100				

Best treatments obtained from first experiment (T): T₁ – Rose; T₂ – Chrysanthemum; T₃ – Hibiscus; T₄ – Butterfly pea; T₅ – Green tea - Dried ginger; B,-Dried lemongrass; B,-Dried ginger & lemongrass Blending materials (B): B *al.* (2015). Similar results were recorded by Sruthi *et al.* (2024) in blended rose tea.

Viscosity

The mean acceptability scores for viscosity of the blended floral teas are decreased from the initial day storage to 60 days after storage.

During initial days, among flowers maximum score for viscosity was recorded in hibiscus (T₂) (8.628) followed by butterfly pea (T_4) (8.118) whereas minimum score was recorded in green tea (T₅) (5.517) followed by chrysanthemum (T₂) with 6.528. Among blending materials highest score for viscosity was observed in dried ginger and lemongrass combination (B₂) (7.505) followed by dried ginger (B₁) (7.210) whereas lowest score was observed in dried lemongrass (B₂) (7.032). Among the interactions, maximum score for viscosity was observed in hibiscus blended with dried ginger and lemongrass (T₂B₃) with 8.850 which is on par with hibiscus blended with ginger (T_3B_1) (8.715) while minimum score was observed in green tea blended with dried lemongrass (T_sB_2) (5.265) followed by green tea blended with dried ginger (T_5B_1) with 5.545.

The highest score for viscosity was observed in hibiscus (T_a) (8.065) followed by butterfly pea (T_a) (7.538) whereas lowest score was observed in green tea (T₅) (5.025) followed chrysanthemum (T_2) (6.012). Among blending materials, maximum score was noticed in dried ginger and lemongrass combination (B₂) (6.930) followed by dried ginger (B₁) (6.645) while minimum score was observed in dried lemongrass (B_2) (6.510). The interaction between different dried flowers and blending materials were found significant. The maximum score for viscosity was observed in hibiscus blended with dried ginger and lemongrass (T₂B₂) (8.355) which was on par with hibiscus blended with dried ginger (T₃B₁) (8.120) and butterfly pea blended with dried ginger and lemongrass (T₄B₃) (8.000) while minimum score was recorded in green tea blended with dried lemongrass (T₅B₂) (4.840) followed by green tea blended with ginger (T₅B₁) (5.115) at 60th day of storage.

Overall acceptability

The average score for the overall acceptability of the blended floral tea powder was decreased gradually from the initial day of storage to 60 days after storage.

The data revealed that different flowers and blending materials had significant effect on overall acceptability. Among the flowers butterfly pea (T_4) recorded maximum score (8.790) followed by hibiscus (T_3) with 8.558 whereas minimum score was observed in green tea (T_5)

(7.370) followed by chrysanthemum (T_2) (7.515). Among the blending materials, maximum score for overall acceptability was exhibited in dried lemongrass (B_2) with 8.355 followed by dried ginger and lemongrass combination (B_3) (8.035) while minimum score was recorded in dried ginger (B_1) (7.722). Among interactions, maximum score was recorded in butterfly pea flowers blended with dried lemongrass (T_4B_2) (9.000) which is on par with butterfly pea blended with dried ginger and lemongrass (T_4B_3) (8.840) and hibiscus blended with dried lemongrass (T_3B_2) (8.825) while minimum score was noticed in chrysanthemum blended with dried ginger (T_2B_1) (6.985) followed by green tea blended with dried ginger (T_5B_1) with 7.145.

By the 60^{th} day of storage, butterfly pea (T_{A}) shown highest score for overall acceptability (8.125) followed by hibiscus (T_3) (7.790) while lowest score was recorded in green tea (T₅) (6.620) followed by chrysanthemum (T_2) (6.767). Among different blending materials, maximum score for overall acceptability was noticed in dried lemongrass (B₂) (7.611) followed by dried ginger and lemongrass combination (B₃) (7.245) while minimum score was observed in dried ginger (B₁) with 7.032. As per the interactions, highest score for overall acceptability was recorded in butterfly pea blended with dried ginger and lemongrass (T₄B₂) (8.320) which was on par with butterfly pea blended with lemongrass (T_AB_2) (8.135) and hibiscus blended with dried lemongrass combination (T_3B_2) (8.110) however minimum score was recorded in chrysanthemum blended with dried ginger (T_2B_1) (6.255) followed by green tea blended with dried ginger (T_sB₁) with 6.385.

From the above data, it could be concluded that highest score for overall acceptability was recorded in butterfly pea blended with dried ginger and lemongrass (T_4B_3) . These findings are in agreement with Vinokur *et al.* (2006), who also reported higher consumer preference for blends with complementary flavours. The decline in overall acceptability with prolonged storage can be attributed to the gradual deterioration of sensory attributes such as colour, flavour, taste and viscosity, all of which directly influence consumer perception. Similar results were observed by Amol *et al.* (2022) in hibiscus and rose tea.

Conclusion

Highest antioxidant activity was observed in rose blended with dried ginger and lemongrass whereas highest anthocyanin was observed in hibiscus blended with dried lemongrass while highest scores for colour, flavour, taste and overall acceptability were noticed in butterfly pea flowers blended with dried lemongrass and lowest microbial count was noticed in green tea blended with dried ginger and lemongrass combination.

References

- Aggarwal, P. and Kaur S. (2017). Technology development for the preparation, concentration and utilization of rose extract in different valuable products and by products with retention of color and flavor. *The Pharma Innov.*, **6**, 189.
- Amol, J., Salma Z., Laxminarayana D. and Praneeth K.S. (2022). Effect of fresh and dry petals of different commercial flowers on Anthocyanin content and sensory evaluation in herbal tea. *The Pharma Innov. J.*, 11(12), 384-88.
- Avneet, K., Radhika S., Kajal R., Vandana T., Preeti and Poonam D. (2019). Antioxidant levels in Indian rose, Hibiscus, Chrysanthemum and Marigold tea and their comparison with Black and Green tea. *Int. Res. J. Pharma.*, **10(10)**, 52-55.
- Costa, J.N.D., Figueiredo R.W.D. and Sousa P.H.M.D., Gonzaga M.L.D.C., Constant P.B.L. and Soares D.J. (2013). Study of the stability of passion fruit (*Passiflora edulis f. flavicarpa*) powder from organic farming. *Recebido Para Publicacao.*, **3(2)**, 705-16.
- Fitrayana, C. (2014). Pengaruh lama dan suhu pengeringan terhadap karakteristik teh herbal pare (Momordica charantia L.). Skripsi. Jurusan Teknologi Pangan. Fakultas Teknik. Universitas Pasundan. Bandung.
- Foline, O., Emenike A.F. and Eunice B.I. (2011). Comparative analysis of the nutritional composition of three different drying methods of *Moringa oleifera* leaves. *Int. J. Appl. Agricult. Res.*, **6(2)**, 131-138.
- Mukhopadyay, M., Bantawa P., Das A., Sarkar B., Bera B., Ghosh P. and Mondal T.K. (2012). Changes of growth, photosynthesis and alteration of leaf antioxidative defence system of tea *Camellia sinensis* L.) seedlings under aluminum stress. *Biometals*, **25(6)**, 1141-1154.
- Naithani, V., Nair S. and Kakkar P. (2006). Decline in antioxidant capacity of Indian herbal teas during storage and its relation to phenolic content. *Food Res. Int.*, **39**, 176-81.
- Nath, P. (2007). Development of Processed Products from Calyces of Roselle (*Hibiscus sabdariffa* L.) (*Doctoral dissertation*, ANGRAU PGRC College of Home Science: Food and Nutrition); 2007
- Oduro, I., Twumasi P., Tandoh M.A., Ankar-Brewoo G. and De-Heer N.E.A. (2013). Formulation and sensory evaluation of herb tea from *Moringa oleifera*, *Hibiscus sabdariffa* and *Cymbopogon citratus*. *J. Ghana Sci. Assoc.*, **15(1)**, 53-62.
- Pruthviraj, S.P. and Harshal R.W. (2024). Formulation and evaluation of hibiscus herbal tea. *Int. Res. J. Modernization in Engineering Technology and Science*.
- Singh, J. and Dhankhar B.S. (1992). Biological changes in onion bulbs during storage as influenced by pre-harvest treatments. *Veg. Sci.*, **19**(1), 86-91.

- Sofiah, S., Aswan A., Yunanto I., Ramayanti C., Amelia P.D. and Utami A.N. (2022). February. Making herbal tea from a mixture of butterfly pea flower (*Clitoria ternatea*) and ginger powder (*Zingiber officinale*) by using drying method according to Indonesian National Standards (SNI). *International Conference*. (*FIRST-T1-T2 2021*), 107-14.
- Sra, S.K., sandhu K.S. and Ahluwalia P. (2014). Effect of treatments and packaging on the quality of dried carrot slices during storage. *J. Agricult. Sci.*, **4(4)**, 188-199.
- Sruthi, K., Babu K.K., Laxmi K.V., Jyothi G. and Kumar S.P. (2024). Assessment of Anthocyanin Content and Consumer Acceptability of Dried Rose Herbal Tea Blended Infusions. J. Adv. Biol. Biotechnol., 27(6), 838-46.

- Vinokur, Y., Rodov V., Reznick N., Goldman G., Horev B. and Umiel N. (2006). Rose petal tea as an antioxidant rich beverage: cultivar effects. *J. Food Sci.*, **71(1)**, 42-47.
- Vyshali, P., Sudha Vani V., Venkata Subbaiah K., Sujatha R.V., Uma Krishna K. and Sekhar V. (2022). Studies on guava leaf based herbal tea. *The Pharma Innov. J.*, **11(8)**, 477-480.
- Wrolstad, R.E., Durst R.W. and Lee J. (2005). Tracking color and pigment changes in anthocyanin products. *Trends Food Sci. Tech.*, **16(9)**, 423-428.
- Yang, W.J., Li D.P., Li J.K., Li M.H., Chen Y.L. and Zhang P.Z. (2009). Synergistic antioxidant activities of eight traditional Chinese herb pairs. *Biological and Pharmaceutical Bulletin*, **32(6)**, 1021-1026.